Circulating Monocyte Chemoattractant Protein-1 and Risk of Stroke: Meta-Analysis of Population-Based Studies Involving 17 180 Individuals.
Circulation research 2020 ; 125: 773-782.
Georgakis MK, Malik R, Björkbacka H, Pana TA, Demissie S, Ayers C, Elhadad MA, Fornage M, Beiser AS, Benjamin EJ, Boekholdt SM, Engström G, Herder C, Hoogeveen RC, Koenig W, Melander O, Orho-Melander M, Schiopu A, Söderholm M, Wareham N, Ballantyne CM, Peters A, Seshadri S, Myint PK, Nilsson J, de Lemos JA, and Dichgans M
DOI : 10.1161/CIRCRESAHA.119.315380
PubMed ID : 31476962
PMCID : PMC6763364
URL : https://www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.119.315380
Abstract
Proinflammatory cytokines have been identified as potential targets for lowering vascular risk. Experimental evidence and Mendelian randomization suggest a role of MCP-1 (monocyte chemoattractant protein-1) in atherosclerosis and stroke. However, data from large-scale observational studies are lacking. To determine whether circulating levels of MCP-1 are associated with risk of incident stroke in the general population. We used previously unpublished data on 17 180 stroke-free individuals (mean age, 56.7±8.1 years; 48.8% men) from 6 population-based prospective cohort studies and explored associations between baseline circulating MCP-1 levels and risk of any stroke, ischemic stroke, and hemorrhagic stroke during a mean follow-up interval of 16.3 years (280 522 person-years at risk; 1435 incident stroke events). We applied Cox proportional-hazards models and pooled hazard ratios (HRs) using random-effects meta-analyses. After adjustments for age, sex, race, and vascular risk factors, higher MCP-1 levels were associated with increased risk of any stroke (HR per 1-SD increment in ln-transformed MCP-1, 1.07; 95% CI, 1.01-1.14). Focusing on stroke subtypes, we found a significant association between baseline MCP-1 levels and higher risk of ischemic stroke (HR, 1.11 [1.02-1.21]) but not hemorrhagic stroke (HR, 1.02 [0.82-1.29]). The results followed a dose-response pattern with a higher risk of ischemic stroke among individuals in the upper quartiles of MCP-1 levels as compared with the first quartile (HRs, second quartile: 1.19 [1.00-1.42]; third quartile: 1.35 [1.14-1.59]; fourth quartile: 1.38 [1.07-1.77]). There was no indication for heterogeneity across studies, and in a subsample of 4 studies (12 516 individuals), the risk estimates were stable after additional adjustments for circulating levels of IL (interleukin)-6 and high-sensitivity CRP (C-reactive protein). Higher circulating levels of MCP-1 are associated with increased long-term risk of stroke. Our findings along with genetic and experimental evidence suggest that MCP-1 signaling might represent a therapeutic target to lower stroke risk.Visual Overview: An online visual overview is available for this article.